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• AQI - COVID-19-confirmed cases associ-
ation is statistically significant in some
cities.

• Lag effect of AQI on confirmed cases is
statistically significant on lag 1–3 days.

• AQI effect on the confirmed cases in
temperature range of 10–20 °C may be
stronger.

• Impact of AQI on the spread of COVID-
19 may be enhanced under low relative
humidity.
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At the end of 2019, a novel coronavirus, designated as SARS-CoV-2, emerged inWuhan, China andwas identified
as the causal pathogen of COVID-19. The epidemic scale of COVID-19 has increased dramatically, with confirmed
cases increasing across China and globally. Understanding the potential affecting factors involved in COVID-19
transmission will be of great significance in containing the spread of the epidemic. Environmental andmeteoro-
logical factorsmight impact the occurrence of COVID-19, as these have been linked to various diseases, including
severe acute respiratory syndrome (SARS) andMiddle East respiratory syndrome (MERS),whose causative path-
ogens belong to the same virus family as SARS-CoV-2. We collected daily data of COVID-19 confirmed cases, air
quality andmeteorological variables of 33 locations in China for the outbreak period of 29 January 2020 to 15 Feb-
ruary 2020. The association between air quality index (AQI) and confirmed cases was estimated through a
Poisson regression model, and the effects of temperature and humidity on the AQI-confirmed cases association
were analyzed. The results show that the effect of AQI on confirmed cases associated with an increase in each
unit of AQI was statistically significant in several cities. The lag effect of AQI on the confirmed cases was statisti-
cally significant on lag day 1 (relative risk (RR) = 1.0009, 95% confidence interval (CI): 1.0004, 1.0013), day 2
(RR = 1.0007, 95% CI: 1.0003, 1.0012) and day 3 (RR = 1.0008, 95% CI: 1.0003, 1.0012). The AQI effect on the
confirmed casesmight be stronger in the temperature range of 10 °C ≤ T b 20 °C than in other temperature ranges,
while the RR of COVID-19 transmission associated with AQI was higher in the relative humidity (RH) range of
10% ≤ RH b 20%. Results may suggest an enhanced impact of AQI on the COVID-19 spread under low RH.
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1. Introduction

Human beings have suffered two large-scale outbreaks of pneumo-
nia caused by coronavirus in the first two decades of 21th century,
caused by severe acute respiratory syndrome coronavirus (SARS-CoV)
(Drosten et al., 2003), and Middle East respiratory syndrome coronavi-
rus (MERS-CoV) (Zaki et al., 2012). In December 2019, 27 patients with
pneumonia infection of unknown etiology were reported in the city of
Wuhan, Hubei Province, China (Huang et al., 2020). Later, on 7 January,
a novel coronavirus termed Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), was identified as the causative pathogen of
COVID-19 (Lu et al., 2020). Clinically, the common symptoms of
COVID-19 appear to be fever, cough, myalgia or fatigue, hemoptysis, di-
arrhea, dyspnea, lymphopenia and kidney failure (Chen et al., 2020).
More recently, anosmia and other forms of olfactory dysfunction in
COVID-19 patients (Bagheri et al., 2020; Brann et al., 2020) were identi-
fied. Early confirmed cases of COVID-19 were speculated to have had
contact history with a seafood market in Wuhan (Zhou et al., 2020a,
2020b). Soon, human-to-human transmissionwas revealed throughde-
tection of infection in at least one household cluster (Chan et al., 2020)
and in health workers caring for COVID-19 patients (Wang et al., 2020).
There has been a rapid increase in COVID-19 confirmed cases since the
identification of SARS-CoV-2. As of 15 February 2020, 68,500 cumulative
confirmed cases and 1665 deaths have been documented domestically
(NHC, 2020b), and 528 cases and 2 deaths were reported out of China
(WHO, 2020b). The World Health Organization declared the COVID-19
epidemic a public health emergency of international concern on 30 Jan-
uary 2020 (WHO, 2020a). Respiratory viruses, such as SARS-CoV and
MERS-CoV, contained in infectious droplets and body fluids are capable
of contaminating the human conjunctival epithelium and inducing
complications in infected patients, thus leading to respiratory infection
(Belser et al., 2013; Olofsson et al., 2005). The transmission of SARS-
CoV-2 between humansmay occur by three routes (NHC, 2020a): 1) di-
rect transmission via inhalation of respiratory droplets (coughs or
sneezes by infected patients in close proximity); 2) contact transmis-
sion through touch of a surface or object contaminated with the virus;
and 3) aerosol transmission in confined spaces. An early study by Liu
et al. (2020) suggests an even more severe transmissibility than SARS-
CoV (Liu et al., 2020).

There is significant evidence that air pollution is associatedwith pre-
maturemortality (Lelieveld et al., 2015; Giannadaki et al., 2014) and ad-
verse health effects (West et al., 2013; Hirabayashi andNowak, 2016). A
global estimate showed that 4.3 million deaths occurred as a result of
deteriorated air quality (Lelieveld, 2017; Cohen et al., 2017). Elevated
nitrogen oxides (NOx) and particulate matter (PM) concentrations
have been linked to increased incidence rates of cardiovascular and pul-
monary diseases, asthma, diabetes and cancers (Shiraiwa et al., 2017;
Hertel et al., 2013). Specifically, air pollution has been linked to virus-
induced diseases, such as influenza (Chen et al., 2010; Thach et al.,
2010), pneumonia and acute lower respiratory infections (Horne et al.,
2018; Glass and Rosenthal, 2018), and severe acute respiratory syn-
drome (SARS) (Cui et al., 2003). A positive association between air qual-
ity and SARS case fatality was identified by Cui et al. (2003). As a major
air pollutant, particulate matter (PM) is capable of remaining airborne
for a long period (Cowling et al., 2013; Kim et al., 2015). Infectious
virus and viral RNA can be detected on particles with aerodynamic di-
ameters larger and smaller than 5 μm (Milton et al., 2013; Lindsley
et al., 2010). PM of 5 μm or less in diameter attached with viruses can
be inhaled and penetrated deep into the respiratory tract and to the al-
veolar region (30% penetration for 5 μm particles). Inside the human
body, viral agents attached on the PMcan be delivered directly to the re-
spiratory epithelial cells and translocated to other organs (Nemmar,
2004; Tellier, 2009), thus inducing infections and various health effects.
Particularly, airborne PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm)
has been reported to be associated with daily human influenza cases
(Lindsley et al., 2010; Liang et al., 2014;) and respiratory syncytial
virus infection (Vandini et al., 2013; Nenna et al., 2017). Moreover,
SARS mortality was found to be positively correlated with PM with
aerodynamic diameter smaller than 10 μm(PM10). Additionally,meteo-
rological conditions, such as temperature and humidity are associated
with the spread of numerous viral diseases, such as influenza and respi-
ratory syncytial virus (Bloom-Feshbach et al., 2013; Lowen et al., 2007),
SARS and MERS (Lin et al., 2006; Gardner et al., 2019). Epidemiological
studies have shown that lower temperature may increase the risk of
transmission for both SARS and MERS (Lin et al., 2006; Gardner et al.,
2019), and infection with MERS-CoV is more likely to occur under dry
conditions (Gardner et al., 2019).

Although much more about COVID-19 remains to be learned, the
causal pathogen, SARS-CoV-2 belongs to the same virus family as
SARS-CoV and MERS-CoV, and all three of these coronaviruses have
been identified to be capable of airborne transmission (Zhou et al.,
2020a; Yu et al., 2004; Zumla and Hui, 2014). Moreover, the transmis-
sion of SARS andMERS has been associated with air quality and meteo-
rological conditions (Cui et al., 2003; Lin et al., 2006; Gardner et al.,
2019). Therefore, it is reasonable to speculate that environmental and
meteorological factors might affect the spread of COVID-19.

The spread of the COVID-19 epidemic has significantly declined in
some counties, e.g., in China, due to unprecedented nationwide inter-
ventions. However, the COVID-19 outbreak shows no signs of slowing
down from a global perspective. A more comprehensive understanding
of COVID-19, including the possible potential impacts of environmental
factors, would be of significance for containing its spread. Therefore, this
study focuses on analyzing the association between the air quality index
(AQI) and the confirmed cases of COVID-19 and investigating the effect
of temperature and humidity on the AQI - COVID-19-confirmed case
association.

2. Method and material

2.1. Study data

The time-series daily data including number of cumulative con-
firmed case of COVID-19, air quality and meteorological variables of
33 locations in China for the outbreak period of 29 January 2020 to 15
February 2020 were collected.

COVID-19 patients were diagnosed and confirmed according to the
diagnosis and treatment guidelines for novel coronavirus-infected
pneumonia (various versions) issued by the National Health Commis-
sion of China (NHC). China established a reporting system of infectious
diseases and public health emergencies after the SARS epidemic (Wang
et al., 2015). Since the outbreakof theCOVID-19 epidemic, thedaily, and
even 12-hourly confirmed cases (mild, moderate, severe and critical),
suspected cases, close contact cases, and deathswere reported to Health
Commissions at all stages (county level, municipal, provincial and na-
tional). The COVID-19 patient numbers of the 33 cities were derived
from the Health Commissions at the municipal and provincial levels.

Air quality ismonitored in China through amonitoring network cov-
ering four levels: national, provincial, municipal and county level. There
are 1436 urban air quality monitoring stations located in 338 cities of
prefecture-level or higher, 96 in rural areas and 15 background stations
(MEE, 2016). Air pollutants, including sulfur dioxide (SO2), nitrogen di-
oxide (NO2), particulates with aerodynamic diameter b10 μm (PM10)
and 2.5 μm (PM2.5), carbon monoxide (CO), and ozone (O3), are mea-
sured hourly using automatic instruments according to technical proto-
cols of theMinistry of Ecology and Environment of China (MEE). Quality
assurance and quality control procedures follow the standards and re-
quirements regulated by the MEE. The AQI has been adopted in China,
whose level is determined on the basis of the levels of six monitored at-
mospheric pollutants. The AQI demonstrates a direct indication of how
clear or polluted the air is and the associated potential health risk
(MEE, 2012). For instance, an AQI value of 0 to 50 indicates good air
quality with low possibility of affecting public health. As the AQI values



Fig. 1. Spatial distribution of (A)mean daily averages of AQI and (B) COVID-19 confirmed
cases during the study period.

Table 1
Correlation of AQI and meteorological variables.

Factors AQI Temperature Relative
humidity

Wind
speed

Atmospheric
pressure

AQI 1.00
Temperature −0.30** 1.00
Relative humidity −0.08* 0.42** 1.00
Wind speed −0.20** 0.05 0.07 1.00
Atmospheric
pressure

0.08 0.21** 0.53** 0.06 1.00

**: P b 0.01, P* b 0.05.
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become higher, they implymore severe health concerns (51–100,mod-
erate; 101–150, unhealthy for sensitive groups; 151–200, unhealthy,
201–300, very unhealthy; N300, hazardous). The daily AQI and other
pollutants in each city are broadcasted by the environmental official de-
partments and the China National Environmental Monitoring Center
(CNEMC). We extracted daily averages of air quality data, including
AQI, PM2.5, PM10, NO2, SO2 and O3-8h over the study period from a
data platform (https://www.aqistudy.cn/historydata/), whose data are
recorded from an air quality data publishing platform operated by
CNEMC.

Weather variables, including temperature, relative humidity, atmo-
spheric pressure, and wind speed, were obtained as daily averages
(mean daily values are derived by averaging the hourly values when
the average daily data are not available, from ameteorological data pro-
vider (http://hz.zc12369.com/home/) and the China Meteorological
Data Service Center (http://data.cma.cn/en)). Meteorological variable,
air quality data and number of COVID-19 confirmed cases are summa-
rized as themeandaily averages over the study period in the Supporting
Information (SI).

2.2. Analytical method

The time-series Poisson regression, which has been frequently used
in corresponding studies (Gasparrini et al., 2012, 2015; Guo et al., 2013),
is used in this study. Since the weather conditions are correlated with
health effects and the impact may last for a few days (Patz et al., 2000;
Peng et al., 2006), themeteorological factors, including daily mean tem-
perature (T), relative humidity (RH), atmospheric pressure and wind
speed, are controlled for eliminating the potential confounding effects,
with a seven-day moving average and a natural cubic spline with
three degrees of freedom(Chen et al., 2017; Gasparrini, 2014). The asso-
ciation between AQI and the confirmed cases of COVID-19 is investi-
gated by estimating the effect of AQI on the confirmed cases
associated with an increase in each AQI unit, which is referred to as rel-
ative risk (RR).

To characterize the lag associations between AQI and the number of
COVID-19 confirmed cases, the associations were examined using a lag
model (from lag 0 to lag 7). The lag-response association suggests the
temporal variation in risk after a specific exposure, and it reveals thedis-
tribution of current and delayed effects that accumulate across the lag
period (Gasparrini et al., 2015). While exploring the possible effect of
ambient temperature and humidity on the associations between AQI
and confirmed cases of COVID-19, an interactive term between AQI
and confirmed cases of COVID-19 was added on the basis of daily tem-
perature and humidity. The daily temperature and relative humidity
during the study period are categorized in different range groups (see
Tables 2 and 3), and the temperature range of 20 °C b T ≤ 24.9 °C during
the study period and the relative humidity range of 10% ≤ RH b 20% (RH
below 10% not appeared) are considered as the reference group for the
effect estimation. Data were analyzed using R version 3.6.2 (R Core
Team, 2019) and the supplementary package of ‘dnlm’.

3. Results

Fig. 1A illustrates the spatial distribution of AQI in investigated cities,
from which a geographical heterogeneity was observed. The highest
levels of AQIwere represented by cities located inwestern and northern
regions of China, such as Urumqi, Shijiazhuang and Xi'an, all of them are
inland cities, while cities with lower AQI are mostly located in the south
of China, andmostly in coastal areas, e.g., Shenzhen, Sanya and Guiyang.
During the period of study, the highest AQI was recorded in Urumqi,
whereas the lowest was represented by Shenzhen among the 33 inves-
tigated locations. As detailed in Fig. 1B, the number of COVID-19 pa-
tients appears to be higher in cities like Chongqing, Wenzhou,
Shenzhen, Beijing and Shanghai, which are economically more capable,
while cities such as Lhasa, Ordos, and Xining reported much fewer
confirmed cases of COVID-19; these cities are located in west or
north-west of China and are economically less developed. The largest
count of confirmed new cases (60 cases) was reported in Shenzhen on
31 January 2020, while in cities such as Lhasa, Kunming and Shenyang,
no new cases were observed on some days during the observation pe-
riod (e.g., Kunming on 9 and 14 February 2020). Specifically, until 15
February 2020, only 1 case of COVID-19 patient was confirmed in
Lhasa. In total, there were 4883 confirmed cased in the investigated
cities.

Air quality data are correlated with meteorological parameters
(Kumar and Goyal, 2011; Luo et al., 2017). The Pearson correlations of
AQI andmeteorological variables over the study period are summarized
in Table 1. The AQI was statistically significantly negatively correlated
with temperature and wind speed (r = −0.30, and − 0.20, respec-
tively), while no significant correlation was observed with atmospheric
pressure. There was a strong correlation between relative humidity and
atmospheric pressure (r = 0.53) and temperature (r = 0.42), while
weak or no significant correlationswere observed between othermete-
orological factors.

https://www.aqistudy.cn/historydata/
http://hz.zc12369.com/home/
http://data.cma.cn/en


Fig. 3. Association of COVID-19 confirmed cases and increase of each AQI unit on different
lag days.
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The association between AQI and count of confirmed COVID-19
cases, considered as relative risk, for each individual location is detailed
in Fig. 2. The relative risk estimated is variable by cities. Statistically sig-
nificant correlations between AQI and count of confirmed cases were
observed in Jinzhong (RR = 1.008, 95% CI: 1.003, 1.014), Beijing
(RR = 1.006; 95% CI: 1.005, 1.008), Tianjin (RR = 1.005, 95% CI:
1.004, 1.006) and Xi'an (RR=1.003; 95% CI: 1.001, 1.005),which are lo-
cated in the north and north-west of China,whereas no statistical signif-
icance was detected for cities such as Lanzhou (RR = 0.989, 95% CI:
0.978, 0.999), Changsha (RR: 0.990, 95% CI: 0.989, 0.993), Nanning
(RR = 0.991, 95% CI: 0.987, 0.996) and Changchun (RR: 0.993, 95% CI:
0.989, 0.996),most of which are located in the southern region of China.

Fig. 3 demonstrates the lag association of AQI and the number of
confirmed COVID-19 cases. The effect of AQI on the COVID-19 con-
firmed cases was statistically significant at lag day 1 (RR = 1.0009,
95% CI: 1.0004, 1.0013), day 2 (RR = 1.0007, 95% CI: 1.0003, 1.0012)
and day 3 (RR=1.0008, 95% CI: 1.0003, 1.0012), indicating a significant
association of the effect of AQI on the COVID-19-confirmed cases at lag
1–3 days.

Tables 2 and 3 detail the results of the effects of temperature and rel-
ative humidity on the association of AQI and the count of confirmed
COVID-19 cases. The effect of AQI on the confirmed COVID-19 cases in
the temperature range of 10 °C ≤ T b 20 °C might be stronger (with
higher RR value) than in other temperature ranges. With regard to the
Fig. 2. Association of COVID-19 confirmed cases an
effect of AQI on the COVID-19-confirmed cases in different humidity
ranges, the RR values were lower in the relative humidity ranges of
20% ≤ RH b 40%, 40% ≤ RH b 60%, 60% ≤ RH b 80% and 80% ≤ RH ≤ 100%
d increase of each AQI unit for different cities.



Table 2
Effect of different temperature ranges on AQI – COVID 19 confirmed cases association.

Temperature range Relative risk, 95% CI

T b −20 °C (− 22.8 ≤ °C T b −20 °C) 1 (1, 1) (reference group)
−20 °C ≤ T b −10 °C 1.0039684 (1.00114264, 1.00704327)
−10 °C ≤ T b 0 °C 1.00711894 (1.0044128, 1.01009672)
0 °C ≤ T b 10 °C 1.00635137 (1.00372986, 1.00925885)
10 °C ≤ T b 20 °C 1.00886322 (1.00613776, 1.01185857)
T ≥ 20 °C (20 °C ≤ T b 24.9 °C) 1.00646535 (1.00396607, 1.00897226)
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than in the range of 10% ≤ RH b 20%, indicating an enhanced effect of AQI
on the confirmed cases under lower RH. Thismay reflect the fact that vi-
ruses (such as respiratory virus and SARS-CoV) (Paynter, 2015; Chan
et al., 2011) have better stability under low humidity, resulting in
strengthened transmission capability.

4. Discussion

Identifying the key factors that impact the spread of COVID-19 will
be of great significance in containing the spread of the COVID-19 epi-
demic. Generally, infectious agent, host and environment are the three
factors that affect the epidemiology of transmissible diseases (Lin
et al., 2006). Since respiratory diseases are more common in late winter
and early spring, such as SARS (Lin et al., 2006; Cui et al., 2003), the oc-
currence of COVID-19 might, partially, be subjected to environmental
and meteorological conditions.

Both long- and short-term exposure to air pollution has been associ-
ated with a variety of adverse health effects, including acute respiratory
inflammation, asthma and chronic obstructive pulmonary disease
(COPD) (McConnell et al., 2010; Sarnat et al., 2012; Gan et al., 2013;
Andersen et al., 2011), and SARS (Cui et al., 2003). Although the mech-
anisms for a causal association between air quality and SARS-CoV-2
transmission could be complicated, previous studies may provide
clues. Viruses are among the smallest of common primary aerosol parti-
cle classes, with physical diameters as low as 20 nm (Duan, 2008),
e.g., SARS-CoV-2 has enveloped virions that measure approximately
50–200 nm (Xu et al., 2020). However, viruses are not commonly air-
borne as independent individuals and are more likely attached to
other suspended particles (Yang et al., 2011; Chen et al., 2010), such
as PM2.5. Particles that are small enough will remain airborne for a
long period of time because of their low settling velocity, e.g., a 3-m
fall takes 67min for a 5-μmparticle (Tellier, 2009). Hence, the air pollut-
ant concentration, such as PM2.5 and PM10 concentrations, may affect
the aerosol transmission of SARS-CoV-2. Fine particles with viruses at-
tached can be inhaled, resulting in the direct delivery of the viral agents
to the respiratory epithelial cells (Chen et al., 2010; Jaspers et al., 2005).
PM10 has been speculated to impact the transmission of SARS (Cui et al.,
2003). Additionally, studies have revealed that both Na+ and Cl− ions
can interact with virus lipid bilayers (Valley et al., 2011), while Mg+

and Ca2+ can induce structural andmechanical changes in lipid bilayers
through strong binding (Cordomí et al., 2008; Lee et al., 2008). Thus,
chemical components of airborne particlesmay affect the virus inactiva-
tion and the transmission capability. Exhaled viruses in airborne envi-
ronments are generally coated with saliva or mucus that serve as a
resistance against environmental extremes (Tang, 2009). High temper-
aturemay affect the survival of viruses, as it can impact the state of viral
Table 3
Effect of different humidity ranges on AQI – COVID 19 confirmed cases association.

Humidity range Relative risk, 95% CI

10% ≤ RH b 20% 1 (1, 1) (reference group)
20% ≤ RH b 40% 0.99327799 (0.86661034, 1.15354)
40% ≤ RH b 60% 0.99077184 (0.86443011, 1.15062239)
60% ≤ RH b 80% 0.98974706 (0.86353798, 1.14943006)
80% ≤ RH ≤ 100% 0.98975936 (0.86354868, 1.14944439)
proteins (including enzymes) and genome (RNA or DNA) (Tang, 2009).
A number of studies have emphasized the correlation of temperature
and health (Deschenes, 2014; Stafoggia et al., 2008; Gasparrini et al.,
2015), e.g., primaryMERShuman cases in Saudi Arabiaweremore likely
to occur in cold conditions (Gardner et al., 2019), and there was a much
higher risk of increased daily SARS incidence on days with lower tem-
perature (Lin et al., 2006).

Many airborne viruses have been shown to be sensitive to ambient
humidity, which has been hypothesized to be attributed to virus inacti-
vation resulting from the removal of structural water molecules from
the virus's capsid (Yang and Marr, 2012) and damage to the virus on
the surface of aerosol due to surface tension, shear stress, and conforma-
tional rearrangement driven by hydrophobicity. Generally, enveloped
viruses (such as SARS-CoV-2) (Xu et al., 2020), which contain a lipid
membrane, survive better at lower relative humidity (Sobsey and
Meschke, 2003), e.g., more MERS cases were likely to occur under dry
conditions (Gardner et al., 2019), while nonenveloped viruses tend to
be more stable at higher RH (Sobsey and Meschke, 2003). In this
study, the effect of humidity on confirmed cases of COVID-19 and AQI
correlation might be enhanced under lower RH ranges. However,
many exceptions have been identified and remain unexplained
(Lakadamyali et al., 2003; Laliberte et al., 2011). As a novel coronavirus,
the effect of humidity on the spread of COVID-19 deserves further
investigation.

Several limitations in this studymust be acknowledged. First, the re-
productive number (R0) of SARS-CoV-2, which has been estimated to be
muchhigher than that of SARS-CoV (Liu et al., 2020), and the controlling
measures imposed by the governments of all stages have not been
accounted for in this study. Second, data at the individual level are not
accessible; as such, the effects or confounding effects of potential factors
affecting COVID-19 infection, such as age, gender, medical history and
smoking status, could not be assessed. Additionally, the difference in
medical competence and socioeconomic by region might also affect
the number of COVID-19 patients. Nevertheless, efforts in attempting
to analyze the possible environmental and meteorological impacts
might be significant in protectingmedical professionals and in contain-
ing the COVID-19 epidemic. Future studieswithmore detailed consider-
ation of the epidemiological parameters of COVID-19, such as
reproductive number, hospitalization period, case fatality proportion,
individual air pollutants (e.g., PM2.5, PM10 and O3), and social circum-
stance, might be more helpful.
5. Conclusion

In this study, the data of COVID-19 confirmed cases in 33 loca-
tions in China, together with air quality and meteorological data for
the COVID-19 outbreak period of 29 January 2020 to 15 February
2020, were collected. The association between the confirmed cases
and AQI is analyzed. The results of this study suggest that the AQI
was statistically significantly associated with confirmed cases of
COVID-19 in several cities, such as Jinzhong and Beijing. The AQI ef-
fect on COVID-19 spread was statistically significant on lag day 1, lag
day 2 and lag day 3. Examination of temperature and humidity effect
on the AQI - confirmed case association shows that the relative risk of
COVID-19 transmission associated with AQI was higher in the tem-
perature range 10 °C ≤ T b 20 °C, and the AQI might have a stronger
effect on the confirmed cases in the relative humidity range of
10% ≤ RH b 20%.
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